Faculty Submitting: James Grinias

Specify here whether "Pre" or "End" of Unit and the Unit \#: End Unit 3

LOs: Perform cal atomic/mole Determine Calculate m	lations using Avogadro's number and use the concept of the mole to convert between ular and macroscopic quantities empirical and molecular formulas of compounds from elemental analysis data arity for solutions and molarity of diluted solutions.
$\begin{gathered} \text { Unit 3_ } \\ \text { Question } 1 \end{gathered}$	Canvas Question Type: Formula
	What is the total mass (amu) of carbon in $\mathrm{C}_{[\mathrm{al}]} \mathrm{H}_{10} \mathrm{O}_{[\mathrm{b}]}$?
	$a^{*} 12.01$ Let $[\mathrm{a}]=4-12($ vary by 1$)$ and let $[\mathrm{b}]=4-8($ vary by 1$)$.
Read More	https://openstax.org/books/chemistry-2e/pages/3-1-formula-mass-and-the-mole-concept
Unit 3_ Question 2	Canvas Question Type: Formula
	What is the total mass (amu) of carbon in $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{[1]} \mathrm{CH}_{3}$?
	$24.02+(12.01 * a)$ Let [a] = 1-15 (vary by 1).
Read More	https://openstax.org/books/chemistry-2e/pages/3-1-formula-mass-and-the-mole-concept
Unit 3_ Question 3	Canvas Question Type: Multiple Choice
	Compare 1 mole of $\mathrm{H}_{2}, 1$ mole of O_{2}, and 1 mole of F_{2}. Which has the largest number of molecules?
	Correct Answer: All the same Wrong Answers: 1 mole of $\mathrm{H}_{2}, 1$ mole of $\mathrm{O}_{2}, 1$ mole of F_{2}
Read More	https://openstax.org/books/chemistry-2e/pages/3-1-formula-mass-and-the-mole-concept

Unit 3_	Canvas Question Type: Multiple Choice
	Compare 1 mole of $\mathrm{H}_{2}, 1$ mole of O_{2}, and 1 mole of F_{2}. Which has the greatest mass?
	Correct Answer: 1 mole of F_{2} Wrong Answers: 1 mole of H_{2} 1 mole of O_{2} All the same
Read More	https://openstax.org/books/chemistry-2e/pages/3-1-formula-mass-and-the-mole-concept
Unit 3_ Question 5	Canvas Question Type: Multiple Choice
	Which contains the greatest number of oxygen atoms: 1 mol of ethanol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right), 1 \mathrm{~mol}$ of formic acid $\left(\mathrm{HCO}_{2} \mathrm{H}\right)$, or 1 mol of water $\left(\mathrm{H}_{2} \mathrm{O}\right)$?
	Correct Answer: 1 mol of formic acid $\left(\mathrm{HCO}_{2} \mathrm{H}\right)$ Wrong Answers: 1 mol of ethanol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right), 1 \mathrm{~mol}$ of water $\left(\mathrm{H}_{2} \mathrm{O}\right)$, All the same
Read More	https://openstax.org/books/chemistry-2e/pages/3-1-formula-mass-and-the-mole-concept
Unit 3_ Question 6	Canvas Question Type: Multiple Choice
	Which contains the greatest number of carbon atoms: 1 mol of ethanol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right), 1 \mathrm{~mol}$ of formic acid $\left(\mathrm{HCO}_{2} \mathrm{H}\right)$, or 1 mol of water $\left(\mathrm{H}_{2} \mathrm{O}\right)$?
	Correct Answer: 1 mol of ethanol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$ Wrong Answers: 1 mol of formic acid $\left(\mathrm{HCO}_{2} \mathrm{H}\right), 1 \mathrm{~mol}$ of water $\left(\mathrm{H}_{2} \mathrm{O}\right)$, All the same
Read More	https://openstax.org/books/chemistry-2e/pages/3-1-formula-mass-and-the-mole-concept
Unit 3 Question 7	Canvas Question Type: Multiple Choice
	Which contains the greatest mass of oxygen: 1 mol of ethanol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right), 1 \mathrm{~mol}$ of formic acid $\left(\mathrm{HCO}_{2} \mathrm{H}\right)$, or 1 mol of water $\left(\mathrm{H}_{2} \mathrm{O}\right)$?
	Correct Answer: 1 mol of formic acid $\left(\mathrm{HCO}_{2} \mathrm{H}\right)$ Wrong Answers: 1 mol of ethanol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$, 1 mol of water $\left(\mathrm{H}_{2} \mathrm{O}\right)$, All the same
Read More	https://openstax.org/books/chemistry-2e/pages/3-1-formula-mass-and-the-mole-concept

Unit 3_ Question 8	Canvas Question Type: Formula
	Calculate the molar mass of $\mathrm{C}_{[\mathrm{ad}]} \mathrm{H}_{[b]} \mathrm{N}_{[\mathrm{cc]}} \mathrm{O}_{[\mathrm{d}]}$
	$(12.01 * \mathrm{a})+(1.008 * \mathrm{~b})+(14.007 * \mathrm{c})+(15.999 * \mathrm{~d})$ Let $[\mathrm{a}]=7-12($ vary by 1$)$, let $[\mathrm{b}]=9-15($ vary by 1$)$, let $[\mathrm{c}]=3-6($ vary by 1$)$, and let $[\mathrm{d}]=2-$ 8 (vary by 1).
Read More	https://openstax.org/books/chemistry-2e/pages/3-1-formula-mass-and-the-mole-concept
Unit 3_ Question 9	Canvas Question Type: Formula
**	How many moles of the herbicide Treflan $\left(\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~F}\right)$ are in [a] lb? $(1 \mathrm{lb}=454 \mathrm{~g})$
	$(\mathrm{a} * 454) / 283.27$ Let $[\mathrm{a}]=20.0-40.0($ vary by 0.1$)$
Read More	https://openstax.org/books/chemistry-2e/pages/3-1-formula-mass-and-the-mole-concept
Video	Youtube: https://youtu.be/cnf71MBdLTQ Gdrive: https://drive.google.com/file/d/1AOI5UdT2EmwUPFFhnlE4cfheE 7Geyi/view? usp=sharing
Unit 3 Question 10	Canvas Question Type: Formula
	What is the mass (in kg) of [a] moles of glucose ($\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$) ?
	$0.18015 * \mathrm{a}$ Let $[\mathrm{a}]=600.0-700.0($ vary by 0.1$)$
Read More	https://openstax.org/books/chemistry-2e/pages/3-1-formula-mass-and-the-mole-concept
Video	Youtube: https://youtu.be/_jAZS7bbOdE Gdrive: https://drive.google.com/file/d/1rhKKvRwr4T0CI3ipWBu7XM8HwYkspi//view? ?sp=sharing
Unit 3 Question 11	Canvas Question Type: Formula
	Determine the mass (in g) of [a] moles of $\mathrm{O}_{[b]}$
	15.999*a*b

	Let [a] = 0.100-0.900 (vary by 0.001) and let [b] = 2 or 3
Read More	https://openstax.org/books/chemistry-2e/pages/3-1-formula-mass-and-the-mole-concept
$\begin{gathered} \text { Unit 3_ } \\ \text { Question } 12 \end{gathered}$	Canvas Question Type: Multiple Choice
**	How many hydrogen atoms are in the empirical formula of a compound with the following composition: 40.0% carbon, 6.7% hydrogen, and 53.3% oxygen?
	Correct Answer: 2 Wrong Answers, 1, 3, 4, 5, 6
Read More	https://openstax.org/books/chemistry-2e/pages/3-2-determining-empirical-and-molecularformulas
Video	Youtube: https://youtu.be/nxrv4NpBIO4 Gdrive: https://drive.google.com/file/d/1hAu cNGScAl DPbqZhcHa9FtUe7nCDM/view? usp=sharing
$\begin{gathered} \hline \text { Unit 3_ } \\ \text { Question } 13 \end{gathered}$	Canvas Question Type: Multiple Choice
**	Several chemicals used in dry-cleaning consist of carbon, hydrogen, and chlorine. One of these compounds has a molar mass of $198 \mathrm{~g} / \mathrm{mol}$. Analysis of a sample shows that it contains 24.3% carbon and 4.1% hydrogen. How many chlorine atoms are there in a molecule of this compound based on its molecular formula?
	Correct Answer: 4 Wrong Answers: 1,2,3,5,6
Read More	https://openstax.org/books/chemistry-2e/pages/3-2-determining-empirical-and-molecularformulas
Video	Youtube: https://youtu.be/tO9wtZx6v_E Gdrive: https://drive.google.com/file/d/1YL2FSGsuLKHO5PW0tBbTdW5C29uIT4GA/view?usp=sharing
Unit 3_ Question 14	Canvas Question Type: Multiple Choice
	A major textile dye manufacturer developed a new yellow dye. The dye has a percent composition of $75.95 \% \mathrm{C}, 17.72 \% \mathrm{~N}$, and $6.33 \% \mathrm{H}$ by mass with a molar mass of about 240 $\mathrm{g} / \mathrm{mol}$. How many nitrogen atoms are there in a molecule of this compound based on its molecular formula?

	Correct Answer: 3 Wrong Answer: 1,2,4,5,6
Read More	https://openstax.org/books/chemistry-2e/pages/3-2-determining-empirical-and-molecularformulas
Unit 3_ Question 15	Canvas Question Type: Formula
	Determine the molarity of [a] mol of in [b] mL of solution
	$\mathrm{a} /(0.001 * \mathrm{~b})$ Let $[\mathrm{a}]=0.400-0.600($ vary by 0.001$)$ and let $[\mathrm{b}]=400-600($ vary by 1$)$.
Read More	https://openstax.org/books/chemistry-2e/pages/3-3-molarity
Unit 3_ Question 16	Canvas Question Type: Formula
**	Determine the molarity of [a] kg of $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ in [b] L of solution
	(a*4.005)/b Let $[\mathrm{a}]=2.00-4.00($ vary by 0.01$)$ and let $\mathrm{b}=1.200-1.700$ (vary by 0.001)
Read More	https://openstax.org/books/chemistry-2e/pages/3-3-molarity
Video	Youtube: https://youtu.be/sgTbxvrBHcI Gdrive:https://drive.google.com/file/d/1UyPFx7tkYcnh6E6zAEtYMq_e7FBIaJna/view?usp=sharing
Unit 3_ Question 17	Canvas Question Type: Formula
	What is the mass (in g) of the glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ delivered by intravenous injection if a [a] L bag of [b] M glucose is used?
	$a^{*} b^{*} 180.156$ Let $[\mathrm{a}]=0.400-0.600($ vary by 0.001$)$ and let $[\mathrm{b}]=0.250-0.350$ (vary by 0.001).
Read More	https://openstax.org/books/chemistry-2e/pages/3-3-molarity
Unit 3_ Question 18	Canvas Question Type: Formula
	What volume (in mL) of a [a] $M \mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}$ solution can be diluted to prepare 100 mL of a solution with a concentration of [b] M ?

	$100 *(\mathrm{~b} / \mathrm{a})$ Let $[\mathrm{a}]=1.00-2.00($ vary by 0.01$)$ and let $[\mathrm{b}]=0.150-0.350$ (vary by 0.001
Read More	https://openstax.org/books/chemistry-2e/pages/3-3-molarity
Unit 3_ Question 19	Canvas Question Type: Formula
**	A [a] L bottle of a solution of concentrated HCl was purchased for the general chemistry laboratory. The solution contained $[\mathrm{b}] \mathrm{g}$ of HCl . What is the molarity of the solution?
	Answer: (b/36.46)/a Let $[\mathrm{a}]=1.50-3.00($ vary by 0.01$)$ and let $[\mathrm{b}]=800.0-850.0($ vary by 0.1$)$
Read More	https://openstax.org/books/chemistry-2e/pages/3-3-molarity
Unit 3_ Question 20	Canvas Question Type: Formula
	The US Environmental Protection Agency (EPA) places limits on the quantities of toxic substances that may be discharged into the sewer system. Limits have been established for a variety of substances, including the dichromate ion, which is limited to [a] mg / L. If an industry is discharging hexavalent chromium as potassium dichromate $\left(\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}\right)$, what is the maximum permissible molarity (in $\mu \mathrm{M}$) of that substance?
	(3.4*a) Let $[\mathrm{a}]=0.450-0.600($ vary by 0.001$)$
Read More	https://openstax.org/books/chemistry-2e/pages/3-3-molarity

